Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gerd W. Rabe, ${ }^{\text {a* }}$ Florian A. Riederer, ${ }^{\text {a }}$ Christopher D. Incarvito, ${ }^{\text {b }}$ James A. Golen ${ }^{\text {c }}$ and Arnold L. Rheingold ${ }^{\text {d }}$
${ }^{\mathrm{a}}$ Technische Universität München, Department Chemie, Lichtenbergstraße 4, 85747 Garching, Germany, ${ }^{\text {b }}$ Yale University, Department of Chemistry, New Haven, CT 06520, USA, ${ }^{\text {c }}$ University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, North Dartmouth, MA 02747, USA, and ${ }^{d}$ University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, CA 92093, USA

Correspondence e-mail: g.rabe@lrz.tum.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.053$
$w R$ factor $=0.154$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[μ-bis(2,6-di-1-naphthylphenyl)phosphanido]bis[(tetrahydrofuran)sodium(I)]

The molecular structure of the tetrahydrofuran (THF) adduct of the sodium salt of the primary phosphane $\mathrm{DnpPH}_{2}(\mathrm{Dnp}$ is 2,6-di-1-naphthylphenyl), of composition $[\mathrm{Na}(\mathrm{THF})\{\mathrm{P}(\mathrm{H})$ $\mathrm{Dnp}\}(\mathrm{THF})]_{2}$ or $\left[\mathrm{Na}_{2}\left(\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{P}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]$, is reported. The dimeric and centrosymmetric complex features a threecoordinate Na atom in a slightly pyramidal coordination environment, with a sum of angles around sodium of 348.9°, and a P atom in a highly distorted tetrahedral coordination environment.

Comment

A number of secondary and a couple of primary lithium phosphanide compounds have been structurally characterized since the early 1980s (Izod, 2000; Rabe et al., 2001, 2004). From the early 1990s, a number of reports of structure determinations of phosphanide compounds of the heavier alkali metals followed (Izod, 2000). To date, however, compared with the ubiquitous lithium compounds, there is still a dearth of structural data on sodium phosphanide compounds, most of which exhibit a dimeric arrangement in the solid state (Andrianarison et al., 1990; Aspinall \& Tillotson, 1996; Driess et al., 1997; Koutsantonis et al., 1995; Kühl et al., 2000; Rabe et al., 2002). We here report the molecular structure of the tetrahydrofuran solvated sodium salt, (I), of the novel ter-phenyl-based phosphane DnpPH_{2} (Dnp is 2,6-di-1-naphthylphenyl).

(I)

Atom Na 1 is close to atoms $\mathrm{C} 18 A, \mathrm{C} 19 A$ and $\mathrm{C} 20 A$ (Fig. 1), with distances of 3.088 (2), 2.917 (3) and 3.003 (3) \AA, respectively. This configuration may indicate the presence of a weak allyl-like electrostatic interaction between the Na atom and these atoms. The naphthyl ring systems are tilted with respect to the central benzene ring, with dihedral angles of $76.40(7)^{\circ}$ for the C7-C16 ring and $74.17(8)^{\circ}$ for the C17-C26 ring.

Received 26 July 2004 Accepted 5 August 2004 Online 13 August 2004

Figure 1
Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms, except the P -bound H atoms, have been omitted for clarity. Heavy dashed lines are used to highlight the disorder with respect to C30, while a light dashed line illustrates the weak allyl-like interaction with Na . Except for the disorder of C30, all atoms labeled as A were generated using the symmetry operator $(1-x, 1-y, 1-z)$.

Compound (I) was found to be isostructural with its lithium analog (Rabe et al.,, 2004).

Experimental

DnpPH_{2} (Rabe, 2004) was prepared following the published procedures for ${ }^{t} \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{PH}_{2}$ (Cowley et al., 1990) and DmpPH_{2} (Urnezius \& Protasiewicz, 1996). Na(THF)P(H)Dnp was prepared by reaction of DnpPH_{2} with excess sodium metal in THF at ambient temperature. The reaction mixture was centrifuged, evaporated to dryness, washed with hexanes and toluene, and dried under vacuum. Single crystals of the title compound were obtained from a toluene/THF (20:1) solution inside a glove-box at room temperature.

Crystal data

$\left[\mathrm{Na}_{2}\left(\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{P}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]$
$M_{r}=912.94$
Triclinic, $P \overline{1}$
$a=10.5408(9) \AA$
$b=11.5054(10) \AA$
$c=11.6538(10) \AA$
$\alpha=61.951(1)^{\circ}$
$\beta=75.180(1)^{\circ}$
$\gamma=87.642(1)^{\circ}$
$V=1200.64(18) \AA^{3}$
Data collection
Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.913, T_{\text {max }}=0.970$
11 571 measured reflections

Figure 2
The crystal packing, viewed along the a axis. All H atoms have been omitted for clarity.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \text { Kennement on } \\
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053
\end{aligned}
$$

$$
w R\left(F^{2}\right)=0.154
$$

$$
S=1.02
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0886 P)^{2}+\right. \\
& 0.5175 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

4213 reflections
312 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{P} 1-\mathrm{C} 1$	$1.810(2)$	$\mathrm{P} 1-\mathrm{P} 1^{\mathrm{i}}$	$4.153(1)$
$\mathrm{P} 1-\mathrm{Na} 1$	$2.7769(14)$	$\mathrm{Na} 1-\mathrm{O} 1$	$2.218(3)$
$\mathrm{P} 1-\mathrm{Na} 1^{\mathrm{i}}$	$2.8468(13)$	$\mathrm{Na} 1-\mathrm{Na} 1^{\mathrm{i}}$	$3.793(2)$
$\mathrm{P} 1-\mathrm{H} 1$	$1.32(3)$		
$\mathrm{Na} 1-\mathrm{P} 1-\mathrm{Na} 1^{\mathrm{i}}$	$84.81(4)$	$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{P} 1^{\mathrm{i}}$	$113.25(8)$
$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{P} 1$	$140.49(7)$	$\mathrm{P} 1-\mathrm{Na} 1-\mathrm{P} 1^{\mathrm{i}}$	$95.19(4)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Atom C30 in the THF ring was found to be disordered over two positions with roughly 68 (3)/32 (3)\% occupancy. The phosphorus H atom was found from a Fourier difference map and was allowed to refine isotropically. All other H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA)$, with isotropic displacement parameters fixed at 1.2 or 1.5 times U_{eq} of the parent atom, and were refined as riding atoms. Refinement in space group $P 1$ gave higher standard uncertainties in bonding parameters and additional disorder with respect to C atoms of the THF rings.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT and SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Cowley et al., 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular

metal-organic papers

graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Andrianarison, M., Stalke, D. \& Klingebiel, U. (1990). Chem. Ber. 123, 71-73. Aspinall, H. \& Tillotson, M. R. (1996). Inorg. Chem. 35, 5-8.
Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cowley, A. H., Norman, N. C., Pakulski, M., Becker, G., Layh, M., Kirchner, E. \& Schmidt, M. (1990). Inorg. Synth. 27, 235-239.
Driess, M., Pritzkow, H., Skipinski, M. \& Winkler, U. (1997). Organometallics, 16, 5108-5122.
Izod, K. (2000). Adv. Inorg. Chem. 50, 33-57.

Koutsantonis, G. A., Andrews, P. C. \& Raston, C. L. (1995). J. Chem. Soc. Chem. Commun. pp. 47-48.
Kühl, O., Sieler, J., Baum, G. \& Hey-Hawkins, E. Z. (2000). Z. Anorg. Allg. Chem. 626, 605-607.
Rabe, G. W., Riederer, F. A., Incarvito, C. D., Golen, J. A. \& Rheingold, A. L. (2004). Acta Cryst. E60, m1156-m1157.

Rabe, G. W., Guzei, I. A. \& Rheingold, A. L. (2001). Inorg. Chim. Acta, 315, 254-257.
Rabe, G. W., Liable-Sands, L. M. \& Rheingold, A. L. (2002). Inorg. Chim. Acta, 329, 151-154.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Urnezius, E. \& Protasiewicz, J. D. (1996). Main Group Chem. 1, 369372.

